Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(1): e0011890, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206958

RESUMO

Anopheles gambiae and its sibling species Anopheles coluzzii are the most efficient vectors of the malaria parasite Plasmodium falciparum. When females of these species feed on an infected human host, oogenesis and parasite development proceed concurrently, but interactions between these processes are not fully understood. Using multiple natural P. falciparum isolates from Burkina Faso, we show that in both vectors, impairing steroid hormone signaling to disrupt oogenesis leads to accelerated oocyst growth and in a manner that appears to depend on both parasite and mosquito genotype. Consistently, we find that egg numbers are negatively linked to oocyst size, a metric for the rate of oocyst development. Oocyst growth rates are also strongly accelerated in females that are in a pre-gravid state, i.e. that fail to develop eggs after an initial blood meal. Overall, these findings advance our understanding of mosquito-parasite interactions that influence P. falciparum development in malaria-endemic regions.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Feminino , Humanos , Plasmodium falciparum , Anopheles/parasitologia , Mosquitos Vetores , Interações Hospedeiro-Parasita , Malária Falciparum/parasitologia , Malária/parasitologia , Oocistos
2.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285728

RESUMO

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Assuntos
Aedes , Anopheles , Malária , Feminino , Animais , Anopheles/genética , Mosquitos Vetores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas do Ovo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade/genética , Lipídeos , Aedes/genética , Aedes/metabolismo
4.
PLOS Glob Public Health ; 2(5): e0000210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962174

RESUMO

Despite considerable success in controlling malaria worldwide, progress toward achieving malaria elimination has largely stalled. In particular, strategies to overcome roadblocks in malaria control and elimination in Africa are critical to achieving worldwide malaria elimination goals-this continent carries 94% of the global malaria case burden. To identify key areas for targeted efforts, we combined a comprehensive review of current literature with direct feedback gathered from frontline malaria workers, leaders, and scholars from Africa. Our analysis identified deficiencies in human resources, training, and capacity building at all levels, from research and development to community involvement. Addressing these needs will require active and coordinated engagement of stakeholders as well as implementation of effective strategies, with malaria-endemic countries owning the relevant processes. This paper reports those valuable identified needs and their concomitant opportunities to accelerate progress toward the goals of the World Health Organization's Global Technical Strategy for Malaria 2016-2030. Ultimately, we underscore the critical need to re-think current approaches and expand concerted efforts toward increasing relevant human resources for health and capacity building at all levels if we are to develop the relevant competencies necessary to maintain current gains while accelerating momentum toward malaria control and elimination.

5.
PLOS Glob Public Health ; 2(6): e0000262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962314

RESUMO

After a longstanding global presence, malaria is now largely non-existent or suppressed in most parts of the world. Today, cases and deaths are primarily concentrated in sub-Saharan Africa. According to many experts, this persistence on the African continent reflects factors such as resistance to insecticides and drugs as well as insufficient access to essential commodities such as insecticide-treated nets and effective drugs. Crucially, however, this narrative ignores many central weaknesses in the fight against malaria and instead reinforces a narrow, commodity-driven vision of disease control. This paper therefore describes the core challenges hindering malaria programs in Africa and highlights key opportunities to rethink current strategies for sustainable control and elimination. The epidemiology of malaria in Africa presents far greater challenges than elsewhere and requires context-specific initiatives tailored to national and sub-national targets. To sustain progress, African countries must systematically address key weaknesses in its health systems, improve the quality and use of data for surveillance-responses, improve both technical and leadership competencies for malaria control, and gradually reduce overreliance on commodities while expanding multisectoral initiatives such as improved housing and environmental sanitation. They must also leverage increased funding from both domestic and international sources, and support pivotal research and development efforts locally. Effective vaccines and drugs, or other potentially transformative technologies such as genedrive modified mosquitoes, could further accelerate malaria control by complementing current tools. However, our underlying strategies remain insufficient and must be expanded to include more holistic and context-specific approaches critical to achieve and sustain effective malaria control.

6.
Nat Microbiol ; 6(12): 1575-1582, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819638

RESUMO

Wolbachia, a maternally inherited intracellular bacterial species, can manipulate host insect reproduction by cytoplasmic incompatibility (CI), which results in embryo lethality in crosses between infected males and uninfected females. CI is encoded by two prophage genes, cifA and cifB. Wolbachia, coupled with the sterile insect technique, has been used in field trials to control populations of the dengue vector Aedes albopictus, but CI-inducing strains are not known to infect the malaria vector Anopheles gambiae. Here we show that cifA and cifB can induce conditional sterility in the malaria vector An. gambiae. We used transgenic expression of these Wolbachia-derived genes in the An. gambiae germline to show that cifB is sufficient to cause embryonic lethality and that cifB-induced sterility is rescued by cifA expression in females. When we co-expressed cifA and cifB in male mosquitoes, the CI phenotype was attenuated. In female mosquitoes, cifB impaired fertility, which was overcome by co-expression of cifA. Our findings pave the way towards using CI to control malaria mosquito vectors.


Assuntos
Anopheles/microbiologia , Anopheles/fisiologia , Proteínas de Bactérias/metabolismo , Herança Extracromossômica , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Wolbachia/metabolismo , Aedes/genética , Aedes/microbiologia , Aedes/fisiologia , Animais , Anopheles/genética , Proteínas de Bactérias/genética , Feminino , Infertilidade Masculina , Malária/transmissão , Masculino , Mosquitos Vetores/genética , Wolbachia/genética
7.
Commun Biol ; 4(1): 911, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312484

RESUMO

Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where traits underlying male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be determinants of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results suggest that CHC abundance may be subject to sexual selection in addition to selection by insecticide pressure. This has implications for insecticide resistance management, as these traits may be sustained in the population due to their benefits in mating even in the absence of insecticides.


Assuntos
Anopheles/fisiologia , Hidrocarbonetos/farmacologia , Resistência a Inseticidas , Mosquitos Vetores/fisiologia , Feromônios/farmacologia , Comportamento Sexual Animal , Animais , Anopheles/efeitos dos fármacos , Burkina Faso , Epiderme/química , Inseticidas/efeitos adversos , Malária , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/efeitos adversos , Reprodução
8.
PLoS Pathog ; 16(12): e1009131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382824

RESUMO

Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.


Assuntos
Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Comportamento Alimentar , Feminino , Período de Incubação de Doenças Infecciosas
9.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929905

RESUMO

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Assuntos
Ecdisterona/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/parasitologia , Animais , Anopheles/parasitologia , Culicidae , Ecdisterona/fisiologia , Feminino , Células HEK293 , Humanos , Insetos Vetores , Malária/parasitologia , Camundongos , Mosquitos Vetores , Células NIH 3T3 , Oogênese/fisiologia , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
10.
Nature ; 567(7747): 239-243, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814727

RESUMO

Bites of Anopheles mosquitoes transmit Plasmodium falciparum parasites that cause malaria, which kills hundreds of thousands of people every year. Since the turn of this century, efforts to prevent the transmission of these parasites via the mass distribution of insecticide-treated bed nets have been extremely successful, and have led to an unprecedented reduction in deaths from malaria1. However, resistance to insecticides has become widespread in Anopheles populations2-4, which has led to the threat of a global resurgence of malaria and makes the generation of effective tools for controlling this disease an urgent public health priority. Here we show that the development of P. falciparum can be rapidly and completely blocked when female Anopheles gambiae mosquitoes take up low concentrations of specific antimalarials from treated surfaces-conditions that simulate contact with a bed net. Mosquito exposure to atovaquone before, or shortly after, P. falciparum infection causes full parasite arrest in the midgut, and prevents transmission of infection. Similar transmission-blocking effects are achieved using other cytochrome b inhibitors, which demonstrates that parasite mitochondrial function is a suitable target for killing parasites. Incorporating these effects into a model of malaria transmission dynamics predicts that impregnating mosquito nets with Plasmodium inhibitors would substantially mitigate the global health effects of insecticide resistance. This study identifies a powerful strategy for blocking Plasmodium transmission by female Anopheles mosquitoes, which has promising implications for efforts to eradicate malaria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Antimaláricos/farmacologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum , África/epidemiologia , Animais , Anopheles/crescimento & desenvolvimento , Antimaláricos/administração & dosagem , Atovaquona/administração & dosagem , Atovaquona/farmacologia , Citocromos b/antagonistas & inibidores , Feminino , Mosquiteiros Tratados com Inseticida , Malária Falciparum/epidemiologia , Modelos Biológicos , Mosquitos Vetores/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Fatores de Tempo
11.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27602946

RESUMO

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Azetidinas/uso terapêutico , Descoberta de Drogas , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Azetidinas/administração & dosagem , Azetidinas/efeitos adversos , Azetidinas/farmacologia , Citosol/enzimologia , Modelos Animais de Doenças , Feminino , Fígado/efeitos dos fármacos , Fígado/parasitologia , Macaca mulatta/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Masculino , Camundongos , Fenilalanina-tRNA Ligase/antagonistas & inibidores , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Plasmodium falciparum/citologia , Plasmodium falciparum/enzimologia , Segurança
12.
Cell Host Microbe ; 16(6): 778-86, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25498345

RESUMO

During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each Plasmodium sporozoite generates thousands of new parasites, creating high demand for lipids to support this replication and enlarge the PVM. Here, a global analysis of the total lipid repertoire of Plasmodium-infected hepatocytes reveals an enrichment of neutral lipids and the major membrane phospholipid, phosphatidylcholine (PC). While infection is unaffected in mice deficient in key enzymes involved in neutral lipid synthesis and lipolysis, ablation of rate-limiting enzymes in hepatic PC biosynthetic pathways significantly decreases parasite numbers. Host PC is taken up by both P. berghei and P. falciparum and is necessary for correct localization of parasite proteins to the PVM, which is essential for parasite survival. Thus, Plasmodium relies on the abundance of these lipids within hepatocytes to support infection.


Assuntos
Fígado/parasitologia , Malária/metabolismo , Fosfatidilcolinas/biossíntese , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Feminino , Interações Hospedeiro-Parasita , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/metabolismo
13.
PLoS One ; 7(1): e29408, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238609

RESUMO

Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.


Assuntos
Actinas/metabolismo , Hepatócitos/parasitologia , Plasmodium/metabolismo , Multimerização Proteica/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Gelsolina/metabolismo , Gelsolina/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Humanos , Cinética , Fígado/metabolismo , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Plasmodium/genética , Plasmodium/fisiologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...